(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(a(f(x, y))) → f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) → a(f(x, y))
f(b(x), b(y)) → b(f(x, y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(b(x), b(y)) →+ b(f(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / b(x), y / b(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a(a(f(x, y))) → f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) → a(f(x, y))
f(b(x), b(y)) → b(f(x, y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
a(a(f(x, y))) → f(a(b(a(b(a(x))))), a(b(a(b(a(y))))))
f(a(x), a(y)) → a(f(x, y))
f(b(x), b(y)) → b(f(x, y))
Types:
a :: b → b
f :: b → b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a,
fThey will be analysed ascendingly in the following order:
a = f
(8) Obligation:
TRS:
Rules:
a(
a(
f(
x,
y))) →
f(
a(
b(
a(
b(
a(
x))))),
a(
b(
a(
b(
a(
y))))))
f(
a(
x),
a(
y)) →
a(
f(
x,
y))
f(
b(
x),
b(
y)) →
b(
f(
x,
y))
Types:
a :: b → b
f :: b → b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
The following defined symbols remain to be analysed:
f, a
They will be analysed ascendingly in the following order:
a = f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_b2_0(
+(
1,
n4_0)),
gen_b2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
f(gen_b2_0(+(1, 0)), gen_b2_0(+(1, 0)))
Induction Step:
f(gen_b2_0(+(1, +(n4_0, 1))), gen_b2_0(+(1, +(n4_0, 1)))) →RΩ(1)
b(f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0)))) →IH
b(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
a(
a(
f(
x,
y))) →
f(
a(
b(
a(
b(
a(
x))))),
a(
b(
a(
b(
a(
y))))))
f(
a(
x),
a(
y)) →
a(
f(
x,
y))
f(
b(
x),
b(
y)) →
b(
f(
x,
y))
Types:
a :: b → b
f :: b → b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
Lemmas:
f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
The following defined symbols remain to be analysed:
a
They will be analysed ascendingly in the following order:
a = f
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a.
(13) Obligation:
TRS:
Rules:
a(
a(
f(
x,
y))) →
f(
a(
b(
a(
b(
a(
x))))),
a(
b(
a(
b(
a(
y))))))
f(
a(
x),
a(
y)) →
a(
f(
x,
y))
f(
b(
x),
b(
y)) →
b(
f(
x,
y))
Types:
a :: b → b
f :: b → b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
Lemmas:
f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
a(
a(
f(
x,
y))) →
f(
a(
b(
a(
b(
a(
x))))),
a(
b(
a(
b(
a(
y))))))
f(
a(
x),
a(
y)) →
a(
f(
x,
y))
f(
b(
x),
b(
y)) →
b(
f(
x,
y))
Types:
a :: b → b
f :: b → b → b
b :: b → b
hole_b1_0 :: b
gen_b2_0 :: Nat → b
Lemmas:
f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_b2_0(0) ⇔ hole_b1_0
gen_b2_0(+(x, 1)) ⇔ b(gen_b2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_b2_0(+(1, n4_0)), gen_b2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(18) BOUNDS(n^1, INF)